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Asymptotic expansions for parabolic cylinder functions 
of large order and argument 
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Department of Applied Mathematics and Theoretical Physics, The Queen’s University 
of Belfast, Belfast BT7 INN, UK 

MS received 24 May 1972 

Abstract. Using the method of steepest descent, an exact and practicable asymptotic ex- 
pansion for the parabolic cylinder function D,(z) is derived in the case when lzlz and lpl are 
both large and of the same order. Limitations and defects in the existing literature on the 
subject are reviewed. Two-term approximations of considerable importance in the phase- 
integral analysis of four-transition-point problems are obtained. Several examples required 
in the analysis of double underdense-potential-barrier problems are given, including re- 
liable estimates for D- , - iy(2 etni To$$) and Di7(2 efni To&) in terms of simple trigonometric 
and logarithmic functions, under the conditions To > 0 and 7 2 1. It is pointed out that 
such potential barrier problems are associated with perturbed symmetric resonance, strong 
rotational coupling and curve-crossing in atom-atom collision theory. New model transi- 
tion probabilities are presented. 

1. Introduction 

Quantal differential cross sections for atom-atom collisions often exhibit strong 
Stueckelberg oscillations (cf Smith et al 1970), due to the nonadiabatic effects associated 
with the double passage through a pseudocrossing of the principal potential energy 
curves. Similar effects are also associated with the occurrence of perturbed symmetric 
resonance or indeed strong rotational coupling. The results of Stueckelberg (1932), 
which were derived by application of Zwaan-Stueckelberg phase-integral techniques 
to the four-transition-point underdense-potential-barrier problem, are known to be 
incorrect in the limit of symmetric resonance (Bates 1962). An alternative technique, 
the details of which will be presented in another paper, involves the use of comparison 
equations. The principal results, one of which gives the correct symmetric resonance 
limit, have already been reported (Crothers 1971) and depend critically on the appropriate 
asymptotic expansions of the parabolic cylinder function D,(z). Unfortunately the 
expansions in the standard encyclopaedia (cf Magnus et a1 1966 and Miller 1965) are 
generally, though not exclusively, restricted to 1.4 >> max(1, IpI). The purpose of and 
motivation for this paper is to obtain expansions for complex p and z, where lz12 and IpI 
are both large and of the same order of magnitude. Having reviewed the existing litera- 
ture, weshall use the method of steepest descent and thus generalize the work ofplancherel 
and Rotach (1929) on the Hermite polynomials. 
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Asymptotic expansions for Weber functions 1681 

2. Review of Literature 

As already indicated, the existing literature on the asymptotic expansions of D,(z), for 
complex p and z with lz12 and JpI both large and of the same order, has its limitations and 
is at  best confusing. Perhaps the least confusing is the work of Olver (1959). Kazarinoff 
(1961) has described Olver’s work as being the definitive one on the asymptotic behaviour 
of Weber parabolic cylinder functions of large order, being based on a minimal set of 
complete uniform asymptotic expansions. This may be disputed. Olver first expresses 
each D,(z) as a linear combination of two contiguous functions. He then calculates the 
dominant contributions to each using the well known Langer method (1932, 1935). In 
principle this procedure is suspect because the individual subdominant contributions are 
ignored. Although in many cases the procedure may be shown a posteriori to give 
correct results, there are nevertheless many cases where it does not. Particularly con- 
fusing are erroneously predicted signs of the overall subdominant contribution : ambig- 
uity in signs should of course only occur precisely on a Stokes line in the presence of a 
dominant contribution, as a result of the Stokes phenomenon (Dingle 1957, 1958). 
Indeed Olver himself admits that when the required result is totally subdominant, his 
procedure leads to a nugatory, that is worthless, result. Again, particularly crucial to the 
theory of avoided adiabatic or pseudocrossings in atom-atom collisions is the case 
arg(z) = 

Although Buchholz (1969) considers the closely related M,,pi2(z) using the saddle 
point method, the analysis is limited to real values of z/X. Buchholz also points out that 
the asymptotic forms, given by Taylor (1939), are only an order of magnitude approxima- 
tion. Taylor’s results are indeed unsatisfzctory, as may be gleaned from his reliance on 
ad hoc arguments : for instance, on his page 43 his C2 coefficient is set equal to zero in 
order to avoid, a posteriori, absurd results. In any case Taylor fails to realize, indeed 
compounds, the ambiguities in the results of Schwid (1935) and so never obtains an 
accurate subdominant term, basically because like Olver he uses Langer’s approach. 
Taylor’s errors are themselves compounded in the Bateman Manuscript Project (1954a), 
in which it is stated in chapter 6 on page 281 that Taylor introduces the auxiliary variable 

which Olver’s formulae can not and do not cover. 

where the arguments of x, K and (x - 4K) are all zero when these quantities are positive. 
This is ambiguous, since if x = z2  as is required for the analytic function D,(z), then 
x ER’, no matter whether arg(z) = 2 n ~  or (2n+ 1)n. As already mentioned a precursor 
of Taylor’s work was that of Schwid (1935), who gave some consideration to D,(z), 
though using a definition inconsistent with modern usage. On his page 351, Schwid 
presents his principal results in theorem I and table 11. This table contains entirely 
ambiguous phases, which on principle cannot be resolved within his treatment; for 
instance, to get the correct result for certain D,(z) with arg(z) = h, then in the final 
row ofthe table ( -  1) must be taken as e3=’, e”’, e3ni, and e-”’ in the first, second, third and 
fourth columns respectively. Clearly then, the Bateman Manuscript Project (19$4b), 
in its chapter 8 on parabolic cylinder functions, is incorrect in 9 8.4, where it is claimed 
that the behaviour of D,(z), as IpI -, +cc and for arbitrary values of z which satisfy 
IzI < IplliZ, has been completely discussed by Schwid. 

In the introduction we referred to Magnus et a1 (1966). In fact they merely refer to 
Schwid and to Miller (1965), who in turn merely refers to Darwin (1949), whose work 
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gives only the dominant term for D -  +- i a ( ~  e- *ni) for x2 - 4a >> 0. Jorna (1964a, b) has 
also derived some rather unwieldy results for Wk,,,(z), from which Green-type expansions 
for parabolic cylinder functions may be deduced, which are essentially equivalent to 
those derived by Olver and Darwin. 

In any case, apart from the above defects and limitations, there is the question of 
elegance and efficiency. A glance at the papers of Langer, Schwid, Taylor and Olver 
reveals somewhat involved procedures. By contrast, the method, which we shall present 
below, although well known in principle, resolves the detailed analytical difficulties in 
a simple topological manner and at the same time takes care of the algebraic detail in an 
exact and natural combinatorial manner. Most important of all, the method resolves 
all phases without ambiguity. 

3. Exact asymptotic expansions for D J z )  

We may take as our definition for the parabolic cylinder function 

We assume p is not an integer. The principal branch of s - p  is assumed and the contour 
is indicated in figure 1. Evidently D,(z) has no singularities in the finite complex z 

Figure 1. Contour and branch for the chosen representation of Dp(z),  given in equation (1). 

plane, but has an essential singularity at CO. It is easily verified by expanding exp(zs) 
that : 

so that D d z )  is closely related to the confluent hypergeometric function. Indeed in the 
limit as p becomes a positive integer D,(z) represents the familiar harmonic oscillator 
wavefunctions, the bracketed terms in (2 )  being then the Hermite polynomials. 

Putting t = e"'zs and assuming arg(z) E ( -&T, +%) we may rewrite ( 1 )  as 

e-t-+(t2/z2)(te-in)- 1 - p  dt 
zp s (3) 
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Figure 2. Contour and branch for the first transformed representation of D,(z), given in 
equation (3). 

where the contour and the branch of t - P  are indicated in figure 2. Expanding 
exp( - $t2/z2) we obtain the usual asymptotic expansion 

D,(z) N e-fZ2 ZP~F,, ( ; p  -, - ’;”.,;:) a * -  (4) 

the first term of which is a good approximation if IzI >> max(1, lpl). Use of exact re- 
currence relations (cf Magnus et al 1966) yields the complete set of expansions covering 
all arg(z) and exhibiting the Stokes phenomenon. One consequence is that (4) is a good 
approximation within the extended region larg(z)) < %, provided arg(z) is not too close 
to either of the anti-Stokes lines : arg(z) = +%. It may be noted that in obtaining (4), 
we have merely integrated term-by-term using Hankel’s result for the reciprocal of the 
gamma function, that is by condensing the contour on to  the upper and lower lips of the 
cut. 

If (21 is not very much greater than ( P I ,  then expression (4) is poorly determined. In- 
stead we put U = z-ls with arg(z) E ( - n, + n) so that 

D,(z) = 7 r(1+p)e-*z2 2721 z 1 exp{z2(u-iu2)-(1 +p)In(zu)} du ( 5 )  

where the contour and the branch of ln(u) are indicated in figure 3. We assume lz12 and IpJ 
are both large, so that the method of steepest descent may be applied. The two distinct 

Figure 3. Contour and branch for the second transformed representation of D,(z), given in 
equation (5). 
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saddle points oo , U are given by 

~ Z U ,  = ~ + { ~ ~ - 4 ( l + p ) } ~ / ~  
1 

provided z z  # 4(1 + p )  and where the square root branch is chosen so that 

arg(zuj) E ( -  7c, + E), 
The result is that 

where 

f ( u )  z2(u--+u2)-(1 + p )  In(zu) (8) 
aj = sn-+argf" (~ j )  1 (9) 

and where the innermost sum is over all distinct partitions of 21 given by non-negative 
integer solutions {in) such that 

21 

n%, = 21. 
n =  3 

The partitions for 2 < I < 6 are given in the Appendix. The phases ao,  c( which give the 
directions of the lines of steepest descent are formally ambiguous by an additive factor 
of x and must be determined absolutely by reference to the prevailing global geometry. 
Very often a good approximation is to neglect the sum over 1 in (7). Then a convenient 
way of writing the result is 

- i exp{(p + 3) ln(p + 1) - +(p + 1) + i arg(z)} 
v/2 1z2 - 4( 1 + p)I 114 

D,k) = 
x 1 (z + {z' -4( 1 + p ) }  l iZ l  l i 2  exp[ia +dz{zz - 4(1+ p ) }  1'2] 

where 
- ~ ~ ( ~ ~ - 4 ( 1 + p ) } ~ ' ~  
~ + { ~ ~ - 4 ( l + p ) } ' ' ~  

= _ - _  

where the sum in (11) is to be taken over the two sheets of {z2-4(l  +p) ) l i2  and where 
Stirling's formula has been applied to r(l + p )  so that the principal branches of both In 
functions must be taken. 

4. Particular two-term estimates 

As an illustration we deduce unambiguously from (11) and (12) that 

J y D -  - iv(2 etni ToJy) x exp($xy + iy - iy In y -ani - io) sin g 

- exp( - t x y  - &i + io) cos g 
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where 

g = tan-'{ J ( I+  T;)-  To}. (15) 

The prevailing geometry is shown in figure 4, in which both lines are extended to 00 

in both directions. Only principal values are taken in (13), (14) and (15). It may similarly 

Figure 4. Contour of figure 3 specifically for arg(z) = in, but with contour deformed to 
facilitate evaluation by method of steepest descent. The indicatedpoints are the saddle points 
specifically for the function D- I-i,,(2 etni T'Jy) of equation (13). 

be shown that 

D - iy(2 eaffi To Jy) NN exp(+ny + iy - iy In y - io) cos g + exp( -$cy + io) sin g. (16) 
Estimates (13) and (16) are valid for To > 0 and of order unity, and y > 0 and reasonably 
greater than unity. Their importance lies in the fact that they govern the theoretical 
description of perturbed symmetric resonance, and strong rotational coupling in atom- 
atom collisions. The corresponding results required for pseudocrossings are 

(17) Di,(2 e tni  To Jy) x exp($ry - io) sin g + exp( -any + i8 - iy + iy In y) cos g 

JYD- 1 + i y ( 2  eani To JY) 
and 

z exp(&cy - i8 +ani) cos g - exp( -&y + i8 - iy + iy In y +$t i )  sin g (18) 
which may be obtained from (1 I )  and (12), as were (13) and (16). Other results are ob- 
tained from the above results simply by mapping the explicit i to ( -  i), since, as may be 
seen from (2), D,(z) is a real function of two complex variables p and z. 

In the impact parameter treatment of a two-state atom-atom collision the linear 
coefficients of the phase integrals may be subjected to a variation-of-parameters treat- 
ment to yield for instance the coupled equations (3) and (4) of Bates (1962). These equa- 
tions may, in suitable form, be solved analytically using the method of steepest descent. 
The resulting comparison equations can then be solved exactly, yielding the new model 
transition probability 

B = (  '))'I1 (19) 
2 Jy Re[e-*"'D- '-',(2 etxi To JY){D-~ , (~  eani T J 

YID- 1-i.,(2 e**' To Jy)12+ID-iy(2 e*'' To Jy)12 

N sin2 x sech2 y (20) 
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where 

i 

= 4y r (1 + T2)"2 dT. 
flTol 

In the notation of Bates, the Stueckelberg variable T is ( c p -  cq+ Vpp-  hq)/2VM, while 
the model parameters are given by 

To = TI,=, I 
where 2, is the complex transition point also given by T = i, the other three transition 
points being Z,*, - 2: and - 2,. The general Zwaan-Stueckelberg interpretation of 
the model is that 

x+iy = - roZc {4viq + ( e p  - cq + Vpp - Vqq)2} ' I 2  dZ 

which in physical terms is a line integral representing the adiabatic action difference 
between the common turning point and the transition point. The significance and 
importance of the expansion (7) may be gauged by observing that in the case of perturbed 
symmetric resonance, the leading term in the weak-coupling expansion (4) yields a null 
transition probability 9, assuming that To 2 max(l/2Jy, Jy/2) ; moreover the higher- 
order terms possess no simple general physical interpretation. 

For pseudocrossings To is negative and the formula (20) differs from the usual 
Stueckelberg expression 

9 2: 4e-2Y(1-e-2Y)sin2 x. (25) 

For large y they are, however, asymptotically equivalent. For smaller y then, if we can 
nevertheless assume that ITo\ 2 max(l/2Jy, Jy/2), expression (19) yields another new 
model transition probability 

9 E 4e-2~(1-e-2Y)~inZ x+-+-ln - - a r g r  I + -  { 4" : [:) ( :)] 
which has the advantage that it not only agrees with (20) and (25)  as y becomes large, but 
also gives the correct weak-coupling result as y becomes small (Bates and Crothers 1970). 
The derivation of (26) is not straightforward and for instance requires use of the exact 
recurrence relation : 

Since the dominant term of D- in (27) is always the overall dominant contribution, 
whether for weak or strong coupling, we can improve the accuracy of its coefficient by 
retaining r( - iy) explicitly. However, we must then neglect the individual subdominant 
contributions to both Di, and D- - i y  on the right hand side of (27), and in the manner of 
Olver, if we are to obtain the correct strong coupling limit. Thus we actually assume that 

r(l +iy) Diy(e*ni 2 ~ , J y )  N ~ exp( - $ny + i6 - b i )  cos g + exp(4xy - io) sin g 
J(2XY) 
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where for consistency we have also left the r(l + p )  of expression (7) unexpanded. It 
should be noted that expression (28) should not be taken too literally in so far as the 
inherent fundamental solutions change their algebraic character as strong coupling 
(y 2 1) gives way to weak coupling (y < 1). However, the procedure does yield a uniform 
analytic expression for the all important Stokes constant (Crothers 1971 and references 
therein). 
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Appendix. Partitions required to evaluate (7) 

21 71 = 313, 414, 515, * . . , (21)”1 
4 4 
6 6 

32 
8 8 

3, 5 
42 

10 10 
337 
496 
52 
32,4 
12 
399 
438 
597 
62 
43 
34 
32, 6 
3,4,5. 

Notation is similar to that of table 24.2 given by Goldberg et a1 (1965). 
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